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Closures, Interiors, Borders of Sets in Rn

Open and Closed Spheres

Definition

An open sphere of radius r centered in xxx0 is the set

B(xxx0, r) = {xxx ∈ Rn | ‖ xxx − xxx0 ‖< r}.

A closed sphere of radius r centered in xxx0 is the set

B[xxx0, r ] = {xxx ∈ Rn | ‖ xxx − xxx0 ‖6 r}.
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Closures, Interiors, Borders of Sets in Rn

Closure of a Set

Definition

Let S be a subset of Rn. A point xxx is in the closure of a set S if
S ∩ B(xxx , r) 6= ∅ for every r > 0.
The closure of S is denoted by KKK (S).

If S = KKK (S), then S is said to be closed.
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Closures, Interiors, Borders of Sets in Rn

Interior of a Set

Definition

Let S be a subset of Rn. A point xxx is in the interior of a set S if
B(xxx , r) ⊆ S for some r > 0.
The interior of S is denoted by III (S).

If S = III (S), then S is said to be open.

5 / 57



Closures, Interiors, Borders of Sets in Rn

Boundary of a Set

Definition

Let S be a subset of Rn. A point xxx is in the border of a set S if we have
both B(xxx , r) ∩ S 6= ∅ and B(xxx , r) ∩ (Rn − S) 6= ∅ for every r > 0.
The border of S is denoted by ∂(S).
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Closures, Interiors, Borders of Sets in Rn

Example

The set S = B[0002, 1] = {xxx ∈ R2 | x21 + x22 6 1} is closed, that is,
S = KKK (S).
The interior III (S) is

B(0002, 1) = {xxx ∈ R2 | x21 + x22 < 1},

while the border of S is

∂S = {xxx ∈ R2 | x21 + x22 = 1}.
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Segments and Convex Sets

Segments

Let xxx ,yyy ∈ Rn. The closed segment determined by xxx and yyy is the set

[xxx ,yyy ] = {axxx + (1− a)yyy | 0 6 a 6 1}.

The half-closed segments determined by xxx and yyy are the sets

[xxx ,yyy) = {axxx + (1− a)yyy | 0 < a 6 1},

and
(xxx ,yyy ] = {axxx + (1− a)yyy | 0 6 a < 1}.

The open segment determined by xxx and yyy is

(xxx ,yyy) = {axxx + (1− a)yyy | 0 < a < 1}.
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Segments and Convex Sets

Definition

A subset C of Rn is convex if, for all xxx ,yyy ∈ C we have [xxx ,yyy ] ⊆ C .

Note that the empty subset and every singleton {xxx} of Rn is convex.
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Segments and Convex Sets

Example

Every linear subspace T of Rn is convex.

Example

The set Rn
>0 of all vectors of Rn having non-negative components is a

convex set called the non-negative orthant of Rn.

Example

The convex subsets of (R,+, ·) are the intervals of R. Regular polygons
are convex subsets of R2.
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Segments and Convex Sets

Example

An open sphere C (xxx0, r) ⊆ Rn is convex, where Rn is equipped with the
Euclidean norm.
Indeed, suppose that xxx ,yyy ∈ C (xxx0, r), that is, ‖ xxx − xxx0 ‖< r and
‖ yyy − xxx0 ‖< r .
Let a ∈ [0, 1] and let zzz = axxx + (1− a)yyy . We have

‖ xxx0 − zzz ‖ = ‖ xxx0 − axxx − (1− a)yyy ‖
= ‖ a(xxx0 − xxx) + (1− a)(xxx0 − yyy) ‖
6 a ‖ xxx0 − xxx ‖ +(1− a) ‖ xxx0 − yyy) ‖6 r .

so zzz ∈ C (xxx0, r).
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Segments and Convex Sets

Definition

Let U be a subset of Rn and let xxx1, . . . ,xxxk ∈ U. A linear combination of
U, a1xxx1 + · · ·+ akxxxk is

an affine combination of U if
∑k

i=1 ai = 1;
a non-negative combination of U if ai > 0 for 1 6 i 6 k;
a positive combination of U if ai > 0 for 1 6 i 6 k ;
a convex combination of U if it is a non-negative combination of U
and a1 + · · ·+ ak = 1.
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Segments and Convex Sets

Theorem

A subset C of Rn is convex if and only if any convex combination of
elements of C belongs to C.
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Properties of the Class of Convex Sets

Theorem

Let C1, . . . ,Ck be convex subsets of Rn. If b1, . . . , bk ∈ R, then

{yyy = b1xxx1 + · · ·+ bkxxxk | xxx i ∈ Ci for 1 6 i 6 k}

is a convex set.
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Properties of the Class of Convex Sets

Theorem

If C is a convex subset of Rm and f : Rm −→ Rn is an affine mapping,
then the set f (C ) is a convex subset of Rn.
If D is a convex subset of Rn, then f −1(D) = {xxx ∈ Rn | f (xxx) ∈ D} is a
convex subset of Rm.

Proof: Since f is an affine mapping we have f (xxx) = Axxx + bbb, where
A ∈ Rn×m and bbb ∈ Rn for xxx ∈ Rm. Therefore, if yyy1,yyy2 ∈ f (C ) we can
write yyy1 = Axxx1 +bbb and yyy2 = Axxx2 +bbb. This, in turn, allows us to write for
a ∈ [0, 1]:

ayyy1 + (1− a)yyy2 = a(Axxx1 + bbb) + (1− a)(Axxx2 + bbb)

= A(axxx1 + (1− a)xxx2) + bbb

= h(axxx1 + (1− a)xxx2).

The convexity of C implies axxx1 + (1− a)xxx2 ∈ C , so
ayyy1 + (1− a)yyy2 ∈ f (C ), which shows that f (C ) is convex.
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Properties of the Class of Convex Sets

Definition

A subset D of Rn is affine if, for all xxx ,yyy ∈ C and all a ∈ R, we have
axxx + (1− a)yyy ∈ D.
In other words, D is an affine set if every point on the line determined by xxx
and yyy belongs to C .

Note that D is a subspace of Rn if 000 ∈ D and D is an affine set.
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Properties of the Class of Convex Sets

Theorem

Let D be a non-empty affine set in Rn. There exists translation tuuu and a
unique subspace L of Rn such that D = tuuu(L).
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Properties of the Class of Convex Sets

Proof

Let L = {xxx − yyy | xxx ,yyy ∈ D} and let xxx0 ∈ D. We have 000 = xxx0 − xxx0 ∈ L and
it is immediate that L is an affine set. Therefore, L is a subspace.
Suppose that D = tuuu(L) = tvvv (K ), where both L and K are subspaces of
Rn. Since 000 ∈ K , it follows that there exists www ∈ L such that uuu +www = vvv .
Similarly, since 000 ∈ L, it follows that there exists ttt ∈ K such that
uuu = vvv + ttt. Consequently, since www + ttt = 000, both www and ttt belong to both
subspaces L and K .
If sss ∈ L, it follows that uuu + sss = vvv + zzz for some zzz ∈ K . Therefore,
sss = (vvv − uuu) + zzz ∈ K because www = vvv − uuu ∈ K . This implies L ⊆ K . The
reverse inclusion can be shown similarly.
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Properties of the Class of Convex Sets

Theorem

Let A ∈ Rm×n and let bbb ∈ Rm. The set S = {xxx ∈ Rn | Axxx = bbb} is an
affine subset of Rn. Conversely, every affine subset of Rn is the set of
solutions of a system of the form Axxx = bbb.
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Properties of the Class of Convex Sets

Proof

It is immediate that the set of solutions of a linear system is affine.
Conversely, let S be an affine subset of Rn and let L be the linear subspace
such that S = uuu + L. Let {aaa1, . . . ,aaam} be a basis of L⊥. We have

L = {xxx ∈ Rn | aaa′ixxx = 0 for 1 6 i 6 m} = {xxx ∈ Rn | Axxx = 000},

where A is a matrix whose rows are aaa′1, . . . ,aaa
′
m. By defining bbb = Auuu we

have
S = {uuu + xxx | Axxx = 000} = {yyy ∈ Rn | Ayyy = bbb}.
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Properties of the Class of Convex Sets

Theorem

The intersection of any collection of convex (affine) sets in Rn is a convex
(affine) set.

This allows us to define the convex closure KKK conv(S) of a subset S of Rn

as the intersection of all convex sets that contain S . This is the least
convex set that contains S .
Simlarly, KKK aff(S), the intersection of all affine sets that contain S is the
least affine subset of Rn that contains S .
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Closure and Interior Points of Convex Sets

Theorem

Let S be a convex set in Rn with III (S) 6= ∅. If xxx1 ∈ KKK (S) and xxx2 ∈ III (S),
then axxx1 + (1− a)xxx2 ∈ S for a ∈ (0, 1).

22 / 57



Closure and Interior Points of Convex Sets

Proof

Since xxx2 ∈ III (S) there exists ε > 0 such that B(xxx2, ε) ⊆ S . Let
yyy = axxx1 + (1− a)xxx2. To show that yyy ∈ III (S) it is sufficient to show that
B(yyy , (1− a)ε) ⊆ S .

yyy

xxx2 ∈ III (S)

xxx1 ∈ KKK (S)

zzz2

zzz

zzz1
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Closure and Interior Points of Convex Sets

Proof (cont’d)

Since xxx1 ∈ KKK (S) we have

B

(
xxx1,

(1− a)ε− ‖ zzz − yyy ‖
a

)
∩ S 6= ∅.

In particular, there exists zzz1 ∈ S such that

‖ zzz1 − xxx1 ‖<
(1− a)ε− ‖ zzz − yyy ‖

a
.

yyy

xxx2 ∈ III (S)

xxx1 ∈ KKK (S)

zzz2

zzz

zzz1
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Closure and Interior Points of Convex Sets

Proof (cont’d)

Define zzz1 = zzz−azzz1
1−a . This allows us to write

‖ zzz2 − xxx2 ‖ =
∣∣∣∣∣∣zzz − azzz1

1− a
− xxx2

∣∣∣∣∣∣
=

1

1− a
‖ (zzz − yyy) + a(xxx1 − zzz1) ‖

6
1

1− a
(‖ (zzz − yyy) ‖ +a ‖ xxx1 − zzz1 ‖< ε,

so zzz2 ∈ S . By the definition of zzz2 note that zzz = azzz1 + (1− a)zzz2. Since
zzz1,zzz2 ∈ S , we have zzz ∈ S . Therefore, yyy ∈ I (SSS).

25 / 57



Closure and Interior Points of Convex Sets

Corollary

For a convex set S, III (S) is convex.

Corollary

If S is a convex set and III (S) 6= ∅, then KKK (S) is convex
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Closure and Interior Points of Convex Sets

Proof

Let xxx1,xxx2 ∈ KKK (S) and let zzz ∈ III (S). By the theorem on slide 22,
axxx2 + (1− a)zzz ∈ III (S) for each a ∈ (0, 1). For b ∈ (0, 1) we have
bxxx1 + (1− b)(axxx2 + (1− a)zzz)III (S) ⊆ S . Since
lima→1 bxxx1 + (1− b)(axxx2 + (1− a)zzz) = bxxx1 + (1− b)xxx2 ∈ KKK (S).
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Closure and Interior Points of Convex Sets

Corollary

Let S be a set with III (S) 6= ∅. Then, KKK (III (S)) = KKK (S).
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Closure and Interior Points of Convex Sets

Proof

It is clear that KKK (III (S)) ⊆ KKK (S). Let xxx ∈ KKK (S) and yyy ∈ III (S) (since
III (S) 6= ∅). Then, axxx + (1− a)yyy ∈ III (S) for each a ∈ (0, 1). Since
xxx = lima→1 axxx + (1− a)yyy ∈ KKK (III (S)), the equality follows.
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Closure and Interior Points of Convex Sets

Corollary

Let S be a set with III (S) 6= ∅. Then III (KKK (S)) = III (S).
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Closure and Interior Points of Convex Sets

Proof

We have III (S) ⊆ III (KKK (S)). Let xxx1 ∈ III (KKK (S)). There exists ε > 0 such that
B(xxx1, ε) ⊆ KKK (S). Let xxx2 6= xxx1 that belongs to III (S) and let

yyy = (1 + b)xxx1 − bxxx2,

where b = ε
2‖xxx2−xxx1‖ . Since ‖ yyy − xxx1 ‖= ε

2 , we have yyy ∈ KKK (S). But

xxx1 = cyyy + (1− c)xxx2, where c = 1
1+b ∈ (0, 1). Since yyy ∈ KKK (S) and

xxx2 ∈ III (S), then xxx1 ∈ III (S).
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Proximal Point in a Convex Set

The Proximal Point

Lemma

Let C be a nonempty and closed convex set, C ⊆ Rn and let xxx0 6∈ C.
There exits a unique point uuu ∈ C such that ‖ uuu − xxx0 ‖ is the minimal
distance from xxx0 to C.
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Proximal Point in a Convex Set

Proof

Let µ = min{‖ xxx − xxx0 ‖ | xxx ∈ C}. There exists a sequence of elements in
C , (zzzn) such that limn→∞ ‖ zzzn − xxx0 ‖= µ. By the law of the
parallelogram,
‖ zzzk − zzzm ‖2= 2 ‖ zzzk − xxx0 ‖2 +2 ‖ zzzm − xxx0 ‖2 −4 ‖ xxxk+xxxm

2 − xxx0 ‖2. Since
C is convex, we have xxxk+xxxm

2 ∈ C ; the definition of µ implies that∣∣∣∣∣∣xxxk + xxxm
2

− xxx0

∣∣∣∣∣∣2 > µ2,

so
‖ zzzk − zzzm ‖26 2 ‖ zzzk − xxx0 ‖2 +2 ‖ zzzm − xxx0 ‖2 −4µ2.
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Proximal Point in a Convex Set

Proof (cont’d)

Since limn→∞ ‖ zzzn − xxx0 ‖= µ, for every ε > 0, there exists nε such that
k ,m > nε imply ‖ zzzk − xxx0 ‖< µε and ‖ zzzm − xxx0 ‖< µε. Therefore, if
k ,m > nε, it follows that

‖ zzzk − zzzm ‖26 4µ2(ε2 − 1).

Thus, (zzzn) is a Cauchy sequence. If limn→∞ zzzn = uuu, then uuu ∈ C because
C is a closed set.
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Proximal Point in a Convex Set

Suppose vvv ∈ C with vvv 6= vvv and ‖ vvv − xxx0 ‖=‖ uuu − xxx0 ‖. Since C is convex,
www = 1

2(uuu + vvv) ∈ C and we have∣∣∣∣∣∣1
2

(uuu + vvv)− xxx0

∣∣∣∣∣∣ 6 1

2
‖ uuu − xxx0 ‖ +

1

2
‖ vvv − xxx0 ‖= µ.

If
∣∣∣∣∣∣12(uuu + vvv)− xxx0

∣∣∣∣∣∣ < µ, the definition of µ is violated. Therefore, we have

∣∣∣∣∣∣1
2

(uuu + vvv)− xxx0

∣∣∣∣∣∣ = µ,

which implies uuu − xxx0 = k(vvv − xxx0) for some k ∈ R. This, in turn, implies
|k | = 1. If k = 1 we would have uuu − xxx0 = vvv − xxx0, so uuu = vvv , which is a
contradiction. Therefore, a = 1 and this implies xxx0 = 1

2(uuu + vvv) ∈ C , which
is again a contradiction. This implies that uuu is indeed unique.
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Proximal Point in a Convex Set

The point uuu whose existence and uniqueness is was established is the
C -proximal point to xxx0.

x
x

x

xxx0

uuu

xxx

C

3

�
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Proximal Point in a Convex Set

Lemma

Let C be a nonempty and closed convex set, C ⊆ Rn and let xxx0 6∈ C. Then
uuu ∈ C is the C-proximal point to xxx0 if and only if for all xxx ∈ C we have

(xxx − uuu)′(uuu − xxx0) > 0.
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Proximal Point in a Convex Set

Proof

Let xxx ∈ C . Since

‖ xxx − xxx0 ‖2 = ‖ xxx − uuu + uuu − xxx0 ‖2

= ‖ xxx − uuu ‖2 + ‖ uuu − xxx0 ‖2 +(xxx − uuu)′(uuu − xxx0),

‖ uuu − xxx0 ‖2> 0 and (xxx − uuu)′(uuu − xxx0) > 0, it follows that
‖ xxx − xxx0 ‖>‖ xxx − uuu ‖, which means that uuu is the closest point in C to xxx0,
and the condition of the lemma is sufficient.
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Proximal Point in a Convex Set

Proof (cont’d)

Conversely, suppose that uuu is the proximal point in C to xxx0, that is,
‖ xxx − xxx0 ‖>‖ xxx0 − uuu ‖ for xxx ∈ C . If t is positive and sufficiently small,
then uuu + t(xxx − uuu) ∈ C because xxx ∈ C . Consequently,

‖ xxx0 − uuu − t(xxx − uuu) ‖2>‖ xxx0 − uuu ‖2 .

Since

‖ xxx0 − uuu − t(xxx − uuu) ‖2=‖ xxx0 − uuu ‖2 −2t(xxx0 − uuu)′(xxx − uuu) + t2 ‖ xxx − uuu ‖2

it follows that

−2t(xxx0 − uuu)′(xxx − uuu) + t2 ‖ xxx − uuu ‖2> 0,

which implies (xxx − uuu)′(uuu − xxx0) > 0, when we divide the previous equality
by −a 6 0.
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Separation of Convex Sets

Definition

Let S1, S2 be two subsets of Rn and let Hwww ,a be a hyperplane in Rn. Hwww ,a

separates S1 and S2 if www ′xxx > a for xxx ∈ S1 and www ′xxx 6 a for xxx ∈ S2;
strictly separates S1 and S2 if www ′xxx > a for xxx ∈ S1 and www ′xxx < a for
xxx ∈ S2;
strongly separates S1 and S2 if www ′xxx > a + ε for xxx ∈ S1 and www ′xxx < a
for xxx ∈ S2 and some ε > 0.
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Separation of Convex Sets

Separation between a Convex Set and a Point

Theorem

Let S be a non-empty convex set in Rn and yyy 6∈ S. There exists www 6= 000n
and a ∈ R such that www ′yyy > a and www ′xxx 6 a for xxx ∈ S.
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Separation of Convex Sets

Proof

Since S is non-empty and closed and yyy 6∈ S there exists a unique closest
point xxx0 ∈ S such that (xxx − xxx0)′(yyy − xxx0) 6 0 for each xxx ∈ S . Equivalently,

−xxx ′0(yyy − xxx0) 6 −xxx ′(yyy − xxx0).

Since

‖ yyy − xxx0 ‖2 = (yyy − xxx0)′(yyy − xxx0)

= yyy ′(yyy − xxx0)− xxx ′0(yyy − xxx0)

6 yyy ′(yyy − xxx0)− xxx ′(yyy − xxx0)

= (yyy − xxx)′(yyy − xxx0),

for www = yyy − xxx0 6= 000n we have

www ′(yyy − xxx) >‖ yyy − xxx0 ‖2,

so www ′yyy > www ′xxx+ ‖ yyy − xxx0 ‖2.
If a = sup{www ′xxx | xxx ∈ S} we have the desired inequalities.

42 / 57



Separation of Convex Sets

A variation of the previous theorem, where C is just a convex set (not
necessarily closed) is given next.

Theorem

Let C be a nonempty convex set, C ⊆ Rn and let xxx0 ∈ ∂C. There exists
www ∈ Rn − {000n} and a ∈ R such that www ′(xxx − xxx0) 6 0 for xxx ∈ KKK (C ).
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Separation of Convex Sets

Proof

Since xxx0 ∈ ∂C , there exists a sequence (zzzm) such that zzzm 6∈ KKK (C ) and
limm→∞ zzzm = xxx0. By Theorem on slide 41, for each m ∈ N there exists
wwwm ∈ Rn − {000n} such that www ′mzzzm > www ′mxxx for each xxx ∈ KKK (C ). Without
loss of generality we may assume that ‖ wwwm ‖= 1. Since the sequence
(wwwm) is bounded, it contains a convergent subsequence www ip such that
limp→∞www ip = www and we have www ′ipzzz ip > www ′ipxxx for each xxx ∈ KKK (C ). Taking

p →∞ we obtain www ′xxx0 > www ′xxx for xxx ∈ KKK (C ).
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Separation of Convex Sets

Theorem

Let C be a nonempty convex set, C ⊆ Rn and let xxx0 6∈ C. There exists
www ∈ Rn − {000n} and a ∈ R such that www ′(xxx − xxx0) 6 0 for xxx ∈ KKK (C ).

Proof: If xxx 6∈ KKK (C ), the statement follows from the Theorem on slide 41.
Otherwise, xxx0 ∈ KKK (C )− C ⊆ ∂C , so xxx0 ∈ ∂C and the statement is a
consequence of Theorem from slide 43.
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Separation of Convex Sets

Theorem

Let C ⊆ Rn be a closed and convex set. Then, C equals the intersection
of all half-spaces that contain C.

Proof: It is immediate that C is included in the intersection of all
half-spaces that contain C . Conversely, suppose that zzz be a point
contained in all halfspaces that contain C such that zzz 6∈ C . There exists a
half-space that contains C but not zzz , which contradicts the definition of zzz .
Thus, the intersection of all half-spaces that contain C equals C .
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Separation of Convex Sets

Definition

Let S be a non-empty subset of Rn and let xxx0 ∈ ∂(S). A supporting
hyperplane of S at xxx0 is a hyperplane Hwww ,a such that either S ⊆ H+

www ,a

where www ′(xxx − xxx0) > 0 for each xxx ∈ S , or S ⊆ H−www ,a where www ′(xxx − xxx0) 6 0
for each xxx ∈ S .

Equivalently, Hwww ,a is a supporting hyperplane at xxx0 ∈ partial(S) if either
www ′xxx0 = inf{www ′xxx | xxx ∈ S}, or www ′xxx0 = sup{www ′xxx | xxx ∈ S}.
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Separation of Convex Sets

Theorem

Let C ⊆ Rn be a nonempty convex set and let xxx0 ∈ ∂C. There exists a
supporting hyperplane of C at xxx0.

Proof: Since xxx0 ∈ ∂C , there exists a sequence (zzzn) of elements of Rn − C
such that limn→∞ zzzn = xxx0.
For each zzzn there exists wwwn such that www ′nzzzn > a and www ′nxxx 6 a for xxx ∈ C .
Without loss of generality we may assume that ‖ wwwn ‖= 1. Since the
sequence (wwwn) is bounded, it contains a convergent subsequence (www im)
such that limm→∞www im = www .
For this subsequence we have www ′zzz im > a and www ′xxx 6 a. Taking m→∞ we
obtain www ′xxx0 > a and www ′xxx 6 a for all xxx ∈ C , which means that Hwww ,a is a
support plane of C at xxx0.
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Separation of Convex Sets

Theorem

Let S ,T be two non-empty convex subsets of Rn that are disjoint. There
exists www ∈ Rn − {000n} such that

inf{www ′sss | sss ∈ S} > sup{www ′ttt | ttt ∈ T}.

Proof: It is easy to see that the set S − T defined by

S − T = {sss − ttt | sss ∈ S and ttt ∈ T}

is convex. Furthermore 000n 6∈ S − T because the sets S and T are disjoint.
Thus, there exists in S − T a proximal point www to 000n, for which we have
(xxx −www)′www > 0 for every xxx ∈ S − T , that is, (sss − ttt −www)′www > 0, which is
equivalent to

sss ′www > ttt ′www+ ‖ www ‖2

for sss ∈ S and ttt ∈ T . This implies the inequality of the theorem.
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Separation of Convex Sets

Corollary

For any two non-empty convex subsets that are disjoint, there exists a
non-zero vector www ∈ Rn such that

inf{www ′sss | sss ∈ S} > sup{www ′ttt | ttt ∈ KKK (T )}.
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Theorems of Alternatives

Notation

For xxx ,yyy ∈ Rn we write
xxx > yyy

if xi > yi for 1 6 i 6 n,
xxx > yyy

if xi > yi for 1 6 i 6 n, and
xxx ≥ yyy

if xi > yi for 1 6 i 6 n and at least of these inequalities is strict, that is,
there exists i such that xi > yi .
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Theorems of Alternatives

Separation results have two important consequences for optimization
theory, namely Farkas’ and Gordan’s alternative theorems.

Theorem

(Farkas’ Alternative Theorem) Let A ∈ Rm×n and let ccc ∈ Rn. Exactly
one of the following linear systems has a solution:

(i) Axxx 6 000m and ccc ′xxx > 0;
(ii) A′yyy = ccc and yyy > 000m.
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Theorems of Alternatives

Proof

First System Second System
Axxx 6 000m A′yyy = ccc
ccc ′xxx > 0 yyy > 000m

If the second system has a solution, then A′yyy = ccc and yyy > 000m for some
yyy ∈ Rm. Suppose that xxx is a solution of the first system. Then,
ccc ′xxx = yyy ′Axxx 6 0, which contradicts the inequality ccc ′xxx > 0. Thus, if the
second system has a solution, the first system has no solution.
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Theorems of Alternatives

First System Second System
Axxx 6 000m A′yyy = ccc
ccc ′xxx > 0 yyy > 000m

Suppose now that the second system has no solution. Note that the set
S = {xxx ∈ Rn | xxx = A′yyy ,yyy > 000m} is a closed convex set. Furthermore,
ccc 6∈ S because, otherwise, ccc would be a solution of the second system.
Thus, there exists www ∈ Rn − {000n} and a ∈ R such that www ′ccc > a and
www ′xxx 6 a for xxx ∈ S . In particular, since 000n ∈ S we have a > 0 and,
therefore, www ′ccc > 0. Also, for yyy > 000m we have a > www ′A′yyy = yyy ′Awww . Since yyy
can be made arbitrarily large we must have Awww 6 000m. Then www is a
solution of the first system.
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Theorems of Alternatives

Theorem

(Gordan’s Alternative Theorem) Let A ∈ Rm×n be a matrix. Exactly
one of the following linear systems has a solution:

Axxx < 000m for xxx ∈ Rn;
A′yyy = 000n and yyy ≥ 000m for yyy ∈ Rm.
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Proof

First System Second System
Axxx < 000m A′yyy = 000n

yyy ≥ 000m

Let A be a matrix such that the first system, Axxx < 000m has a solution xxx0.
Suppose that a solution yyy0 of the second system exists. Since Axxx0 < 000m
and yyy0 ≥ 000m (which implies that at least one component of yyy0 is positive)
it follows that yyy ′0Axxx0 < 0, which is equivalent to xxx ′0A

′yyy < 0. This
contradicts the assumption that A′yyy = 000n. Thus, the second system
cannot have a solution if the first has one.
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Proof (cont’d)

First System Second System
Axxx < 000m A′yyy = 000n

yyy ≥ 000m

Suppose now that the first system has no solution and consider the
non-empty convex subsets S ,T of Rm defined by

S = {sss ∈ Rm | sss = Axxx ,xxx ∈ Rn} and T = {ttt ∈ Rm | ttt < 000m}.
These sets are disjoint by the previous supposition. Then, there exists
www 6= 000m such that www ′Asss > www ′ttt for sss ∈ S and ttt ∈ KKK (T ). This implies that
www > 000m because otherwise the components of ttt that correspond to a
negative component of www could be made arbitrarily negative (and large in
absolute value) and this would contradict the above inequality. Thus,
www ≥ 000m.
Since 000m ∈ KKK (T ), we also have www ′Asss > 0 for every sss ∈ Rm. In particular,
for sss = −A′www we obtain www ′A(−A′www) = − ‖ A′www ‖2= 0, so A′www = 000m,
which means that the second system has a solution. 57 / 57
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