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D N
Closures, Interiors, Borders of Sets in TPA

Open and Closed Spheres

Definition

An open sphere of radius r centered in xq is the set
B(xo,r) ={x € R" ||| x —x0 ||< r}.
A closed sphere of radius r centered in xq is the set

Blxo,r] ={x € R" ||| x —x0 ||< r}.
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D N
Closures, Interiors, Borders of Sets in IFA

Closure of a Set

Definition

Let S be a subset of R". A point x is in the closure of a set S if
SN B(x,r) # for every r > 0.

The closure of S is denoted by K(S).

If S = K(S), then S is said to be closed.

57



D N
Closures, Interiors, Borders of Sets in IFA

Interior of a Set

Definition

Let S be a subset of R". A point x is in the interior of a set S if
B(x,r) C S for some r > 0.

The interior of S is denoted by /(S).

If S =1(S), then S is said to be open.
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D N
Closures, Interiors, Borders of Sets in IFA

Boundary of a Set

Definition

Let S be a subset of R". A point x is in the border of a set S if we have
both B(x,r)NS # () and B(x,r) N (R" — S) # () for every r > 0.

The border of S is denoted by J(S).
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D N
Closures, Interiors, Borders of Sets in IFA

Example

The set S = B[02,1] = {x € R? | x? + x3 < 1} is closed, that is,
S —K(S).

The interior I(S) is

B(02,1) = {x € R? | x? + x3 < 1},
while the border of S is

S ={xeR? | x* +x3 =1}.
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Segments and Convex Sets

Segments

Let x,y € R". The closed segment determined by x and y is the set
.yl = {ax + (1—a)y | 0< a< 1},

The half-closed segments determined by x and y are the sets
[x.y)={ax+(1-a)y [ 0<a<1},

and
(x,y]={ax+(1—-a)y | 0<a<l1}

The open segment determined by x and y is

(x,y)={ax+(1l—a)y | 0<a<1}.
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Segments and Convex Sets

Definition

A subset C of R" is convex if, for all x,y € C we have [x,y] C C.

Note that the empty subset and every singleton {x} of R” is convex.
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Segments and Convex Sets

Example

Every linear subspace T of R" is convex.

Example

The set RZ, of all vectors of R" having non-negative components is a
convex set called the non-negative orthant of R".

Example

The convex subsets of (R, +,-) are the intervals of R. Regular polygons
are convex subsets of R?.
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Segments and Convex Sets

Example

An open sphere C(xp,r) C R" is convex, where R” is equipped with the
Euclidean norm.

Indeed, suppose that x,y € C(xo, r), thatis, || x — xo ||< r and

Iy —xo<r.

Let a € [0,1] and let z = ax + (1 — a)y. We have

[xo—z] = [ xo—ax—(1-a)y]
= [l a(xo—x)+ (1 —a)(xo—y) ||
allxo—x | +(1—a)|xo—y)l<r

N

so z € C(xo, r).
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Segments and Convex Sets

Definition

Let U be a subset of R” and let x1, ..

U, aix1 + -+ 4+ agxy is

o
(]
o
o

an affine combination of U if Z:/le ai=1,
a non-negative combination of U if a; > 0 for 1 < i < k;
a positive combination of U if a; > 0 for 1 < i < k;

a convex combination of U if it is a non-negative combination of U

and a1+ -+ a, = 1.

., X, € U. A linear combination of
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Segments and Convex Sets

Theorem

A subset C of R" is convex if and only if any convex combination of
elements of C belongs to C.

13 /57



Properties of the Class of Convex Sets

Theorem

Let Gy, ..., Cx be convex subsets of R". If by, ..., bx € R, then

{y=bix1+ -+ byxx | xi € C; for1 < i<k}

is a convex set.

14 /57



Properties of the Class of Convex Sets

Theorem

If C is a convex subset of R™ and f : R™ — R" is an affine mapping,
then the set f(C) is a convex subset of R".

If D is a convex subset of R", then f"}(D) = {x € R" | f(x) € D} is a
convex subset of R™.

Proof: Since f is an affine mapping we have f(x) = Ax + b, where

A€ R™™ and b € R" for x € R™. Therefore, if y1,y2 € f(C) we can
write y1 = Axy + b and y» = Axo + b. This, in turn, allows us to write for
ael0,1]:

ay1+(1—aly2 = a(Axi+b)+ (1 - a)(Axz + b)
= A(ax1+(1—a)x2)+ b
= h(ax1 + (1 — a)x2).

The convexity of C implies ax; + (1 — a)xz € C, so
ay1 + (1 — a)y2 € f(C), which shows that f(C) is convex.
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Properties of the Class of Convex Sets

Definition

A subset D of R” is affine if, for all x,y € C and all a € R, we have

ax+(1—a)y e D.
In other words, D is an affine set if every point on the line determined by x

and y belongs to C.

Note that D is a subspace of R? if 0 € D and D is an affine set.
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Properties of the Class of Convex Sets

Theorem

Let D be a non-empty affine set in R". There exists translation t, and a
unique subspace L of R" such that D = t,(L).
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Proof

Let L={x—y | x,y € D} and let xo € D. We have 0 = xo — x¢ € L and
it is immediate that L is an affine set. Therefore, L is a subspace.
Suppose that D = t,(L) = t,(K), where both L and K are subspaces of
R". Since 0 € K, it follows that there exists w € L such that u +w = v.
Similarly, since 0 € L, it follows that there exists t € K such that

u =v +t. Consequently, since w +t =0, both w and t belong to both
subspaces L and K.

If s € L, it follows that u +s = v + z for some z € K. Therefore,
s=(v—u)+2z¢€ K because w =v —u € K. This implies L C K. The
reverse inclusion can be shown similarly.
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Properties of the Class of Convex Sets

Theorem

Let Ac R™ " and let b€ R™. Theset S ={x € R" | Ax = b} is an
affine subset of R". Conversely, every affine subset of R" is the set of
solutions of a system of the form Ax = b.
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Proof

It is immediate that the set of solutions of a linear system is affine.
Conversely, let S be an affine subset of R” and let L be the linear subspace
such that S = u+ L. Let {a1,...,am} be a basis of L. We have

L={xeR"|aix=0for1<i<m}={xeR" | Ax =0},

where A is a matrix whose rows are a},...,a},. By defining b = Au we

have
S={u+x| Ax=0} ={y €R" | Ay = b}.
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Properties of the Class of Convex Sets

Theorem

The intersection of any collection of convex (affine) sets in R" is a convex
(affine) set.

This allows us to define the convex closure Kcony(S) of a subset S of R”
as the intersection of all convex sets that contain S. This is the least
convex set that contains S.

Simlarly, K,g(S), the intersection of all affine sets that contain S is the
least affine subset of R” that contains S.
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Closure and Interior Points of Convex Sets

Theorem
Let S be a convex set in R" with I(S)
1

#10. If x1 € K(S) and x2 € 1(S),

then ax1 + (1 — a)x2 € S for a € (0,1).




Closure and Interior Points of Convex Sets
Proof

Since x2 € I(S) there exists € > 0 such that B(x2,¢) C S. Let

y = ax1 + (1 — a)x. To show that y € I(S) it is sufficient to show that
B(y,(1—a)e) C S.
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L Closureand Interior Points of Convex Seis |
Proof (cont'd)

Since x1 € K(S) we have

6 (s, 02 2=

. )ms#ﬂ

In particular, there exists z; € S such that

(I-a)e—lz—y|
. :

| z1 —x1[I<
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Proof (cont'd)

Define z; = #-%2L

<=L This allows us to write

Z—az,

||22—x2 || = H _X2H
= mH (z—y)+alxi—2z1) |
1
S 7 5UlE=yl+alx-zi]<e

so zp € S. By the definition of z, note that z = az; + (1 — a)z,. Since
21,z € S, we have z € S. Therefore, y € I(S).
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Closure and Interior Points of Convex Sets

Corollary
For a convex set S, I(S) is convex. J

Corollary
If S is a convex set and I(S) # (), then K(S) is convex J
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Closure and Interior Points of Convex Sets
Proof

Let x1,x2 € K(S) and let z € I(S). By the theorem on slide 22,
axy + (1 — a)z € I(S) for each a € (0,1). For b € (0,1) we have
bx1 4+ (1 — b)(ax2 + (1 — a)z)I(S) C S. Since

limsy—q1 bx1 + (1 — b)(ax2 + (1 — a)z) = bx1 + (1 — b)X2 € K(S)



Closure and Interior Points of Convex Sets

Corollary
Let S be a set with 1(S) # 0. Then, K(1(S)) = K(S). J
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Closure and Interior Points of Convex Sets
Proof

It is clear that K(I(S)) C K(S). Let x € K(S) and y € I(S) (since
1(S) #0). Then, ax + (1 — a)y € I(S) for each a € (0,1). Since
x =lima1 ax + (1 — a)y € K(I(S)), the equality follows.

29 /57



Closure and Interior Points of Convex Sets

Corollary
Let S be a set with 1(S) # 0. Then I1(K(S)) = I(S). J
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Closure and Interior Points of Convex Sets
Proof

We have I(S) C I(K(S)). Let x1 € I(K(S)). There exists € > 0 such that
B(x1,€) € K(S). Let xo # x; that belongs to I(S) and let

y = (14 b)xy — bxa,

where b = Since ||y — X1 |=

2HX2 —x|”

we have y € K(S). But

5
x1 = cy + (1 — ¢)x2, where ¢ = b € (0,1). Sincey € K(S) and
X € I(S), then x; € I(S)
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Proximal Point in a Convex Set

The Proximal Point

Lemma

Let C be a nonempty and closed convex set, C C R" and let xo & C.
There exits a unique point u € C such that || u — xq || is the minimal
distance from xq to C.
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Proof

Let = min{|| x —xo ||| x € C}. There exists a sequence of elements in

C, (zp) such that lim,_ || 2z, — X0 ||= . By the law of the
parallelogram,

| zk —zm I°=2 || zk —x0 |7 +2 || Zm — x0 ||> —4 || x”% —xo ||2. Since
C is convex, we have w% € C; the definition of y implies that
X+ x 2
I
2
o)

I 2k = zm [7< 2 || 2k = x0 |I* +2 || zm — x0 ||* —4p.
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Proof (cont'd)

Since limp—00 || Zn — X0 ||= p, for every € > 0, there exists n. such that
k,m > n. imply || zx — xo ||< pe and || z; — xo ||< pe. Therefore, if
k, m > n,, it follows that

| 2 — zm |[>< 4p? (2 = 1).

Thus, (z,) is a Cauchy sequence. If lim,_,o 2, = u, then u € C because
C is a closed set.
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Proximal Point in a Convex Set

Suppose v € C with v # v and || v — xg ||=|| u — X ||. Since C is convex,
w = 1(u+v) € C and we have

[t v) —xo| < S llu—xo | 45 | v—xo =
2 0| x 2 0 5 0 ||= M-
If H%(u +v) —XOH < p, the definition of p is violated. Therefore, we have

e

which implies u — xg = k(v — xq) for some k € R. This, in turn, implies
|k| = 1. If k =1 we would have u — xo = v — xg, so u = v, which is a
contradiction. Therefore, a =1 and this implies xo = 3(u + v) € C, which

is again a contradiction. This implies that u is indeed unique.
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Proximal Point in a Convex Set

The point u whose existence and uniqueness is was established is the
C-proximal point to xg.

X0
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Proximal Point in a Convex Set

Lemma

Let C be a nonempty and closed convex set, C C R" and let xo & C. Then
u € C is the C-proximal point to xqg if and only if for all x € C we have

(x —u)(u—x0) > 0.
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Proof

Let x € C. Since
Ix=xo|? = [lx-utu—x|P
= x—u |+l u—xo|?+(x—u)(u—xo),
u—xg ||“=0and (x —u)(u—xqp) = 0, 1t follows that
2> 0 and ! 0, it foll h

|| x — xo ||>]| x — u ||, which means that u is the closest point in C to xo,
and the condition of the lemma is sufficient.
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Proof (cont'd)

Conversely, suppose that u is the proximal point in C to xq, that is,
|| x —xo || =] xo —u || for x € C. If t is positive and sufficiently small,
then u + t(x — u) € C because x € C. Consequently,

I xo —u—t(x —u) [>>[| xo —u ||*.
Since
I xo —u — t(x —u) |[>=[| xo — u ||> —2t(xo — u)'(x —u) + £ || x —u ||
it follows that
—2t(xo —u) (x —u) +t* | x —u |*>= 0,

which implies (x — u)'(u — xg) > 0, when we divide the previous equality
by —a < 0.
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Separation of Convex Sets

Definition
Let 51,52 be two subsets of R” and let Hy, , be a hyperplane in R". Hy 5
@ separates S; and S; if w/x > a for x € S; and w/x < a for x € Sp;
o strictly separates S; and S, if w/x > a for x € S; and w'x < a for
x € 5y;
@ strongly separates S; and S, if w'x > a+eforx € S; and w/x < a
for x € 55 and some ¢ > 0.
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Separation of Convex Sets

Separation between a Convex Set and a Point

Theorem

Let S be a non-empty convex set in R" andy ¢ S. There exists w # 0,
and a € R such that w'y > a and w'x < a forx € S.
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Proof

Since S is non-empty and closed and y ¢ S there exists a unique closest
point xo € S such that (x —xq)’(y — xo0) < 0 for each x € S. Equivalently,
—xo(y — x0) < =X'(y — xo).

Since

ly—=xol> = (y—x0)'(y —xo)

= ¥'(y — x0) — xo(y — xo)
y'(y —x0) — x'(y — xo)
(y —x)'(y — xo0),

N

forw =y — xg # 0, we have
Wy —x) =y —xol?

sow'y >wx+ |y —xo ||
If a=sup{w'x | x € S} we have the desired inequalities.



Separation of Convex Sets

A variation of the previous theorem, where C is just a convex set (not
necessarily closed) is given next.

Theorem

Let C be a nonempty convex set, C C R" and let xo € OC. There exists
w e R"—{0,} and a € R such that w'(x — xg) < 0 for x € K(C).
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Proof

Since xg € 0C, there exists a sequence (z,,) such that z,, ¢ K(C) and
lim; 00 Zm = Xo. By Theorem on slide 41, for each m € N there exists
W € R" —{0,} such that w),z,, > w/ x for each x € K(C). Without
loss of generality we may assume that || w,, ||= 1. Since the sequence
(wm) is bounded, it contains a convergent subsequence w;, such that
limp—0o wj, = w and we have wf-pz,-p > w:-px for each x € K(C). Taking
p — oo we obtain w'xg > w'x for x € K(C).
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Separation of Convex Sets

Theorem

Let C be a nonempty convex set, C C R" and let xo & C. There exists
w e R"—{0,} and a € R such that w'(x — xo) < 0 for x € K(C).

Proof: If x ¢ K(C), the statement follows from the Theorem on slide 41.
Otherwise, xg € K(C) — C C 9C, so xg € OC and the statement is a
consequence of Theorem from slide 43.
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Separation of Convex Sets

Theorem

Let C C R" be a closed and convex set. Then, C equals the intersection
of all half-spaces that contain C.

Proof: It is immediate that C is included in the intersection of all
half-spaces that contain C. Conversely, suppose that z be a point
contained in all halfspaces that contain C such that z ¢ C. There exists a
half-space that contains C but not z, which contradicts the definition of z.
Thus, the intersection of all half-spaces that contain C equals C.
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Separation of Convex Sets

Definition

Let S be a non-empty subset of R” and let xo € 9(S). A supporting
hyperplane of S at xq is a hyperplane Hy , such that either S C Hd/_,a
where w'(x —xg) > 0 for each x € S, or S C H,, , where w/(x — xo) <0
for each x € S.

Equivalently, Hy , is a supporting hyperplane at xq € partial(S) if either
w'xg = inf{w'x | x € S}, or w'xg = sup{w'x | x € S}.
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Separation of Convex Sets

Theorem

Let C C R" be a nonempty convex set and let xo € OC. There exists a
supporting hyperplane of C at xg.

Proof: Since xo € OC, there exists a sequence (z,) of elements of R” — C
such that lim,_ - z, = xo.

For each z, there exists w, such that w),z, > a and w/x < a for x € C.
Without loss of generality we may assume that || w), Hf 1. Since the
sequence (w,,) is bounded, it contains a convergent subsequence (w;, )
such that limp_oo W, = w.

For this subsequence we have w'z; > a and w/x < a. Taking m — oo we
obtain w'xg > a and w'x < a for all x € C, which means that H, , is a
support plane of C at xg.
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Separation of Convex Sets

Theorem

Let S, T be two non-empty convex subsets of R" that are disjoint. There
exists w € R" — {0,} such that

inf{w's | s € S} >sup{w't | te T}.

Proof: It is easy to see that the set S — T defined by
S—T={s—t|scSandteT}

is convex. Furthermore 0, ¢ S — T because the sets S and T are disjoint.
Thus, there exists in S — T a proximal point w to 0,, for which we have
(x —w)w >0 foreveryx € S— T, thatis, (s —t — w)'w > 0, which is
equivalent to

sw>twt || w?

fors € Sand t € T. This implies the inequality of the theorem.
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Separation of Convex Sets

Corollary

For any two non-empty convex subsets that are disjoint, there exists a
non-zero vector w € R" such that

inf{w's | s € S} > sup{w't | t € K(T)}.
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Notation

For x,y € R" we write

x>y
if x; >y forl<i<n,
xXzy
if ; >y forl<i<n,and
x>y
if x; > y; for 1 </ < nand at least of these inequalities is strict, that is,

there exists i such that Xj > V.
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Theorems of Alternatives

Separation results have two important consequences for optimization
theory, namely Farkas’ and Gordan's alternative theorems.

Theorem

(Farkas’ Alternative Theorem) Let A € R™*" and let ¢ € R". Exactly
one of the following linear systems has a solution:

(i) Ax <0, and c’x > 0;

(i) Ay=candy > 0p,.




Theorems of Alternatives

Proof

First System | Second System

Ax <0, Ay =c

c’x>0 y >0,
If the second system has a solution, then A’y = ¢ and y > 0, for some
y € R™. Suppose that x is a solution of the first system. Then,

¢’x = y'Ax < 0, which contradicts the inequality ¢’x > 0. Thus, if the
second system has a solution, the first system has no solution.
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Theorems of Alternatives

First System | Second System
Ax <0, Ay =c
x>0 y =04,

Suppose now that the second system has no solution. Note that the set
S={xeR" | x=Ay,y >0p,} is a closed convex set. Furthermore,

¢ ¢ S because, otherwise, ¢ would be a solution of the second system.
Thus, there exists w € R” — {0,} and a € R such that w'c > a and

w'x < afor x € S. In particular, since 0, € S we have a > 0 and,
therefore, w'c > 0. Also, for y > 0,, we have a > w/A’y = y’Aw. Since y
can be made arbitrarily large we must have Aw < 0,,. Then w is a
solution of the first system.
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Theorems of Alternatives

Theorem

(Gordan’s Alternative Theorem) Let A € R™*" be a matrix. Exactly
one of the following linear systems has a solution:

e Ax <0, forx € R";

o Ay=0,andy >0,, fory € R™.
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_ Theorems of Alternatives |
Proof

First System | Second System
Ax < 0p, Ay =0,
y=>0n

Let A be a matrix such that the first system, Ax < 0,, has a solution xg.
Suppose that a solution yq of the second system exists. Since Axg < 0,
and yo > 0., (which implies that at least one component of yj is positive)
it follows that yAxg < 0, which is equivalent to xjA'y < 0. This
contradicts the assumption that A’y = 0,. Thus, the second system
cannot have a solution if the first has one.
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Proof (cont'd)

First System | Second System
Ax <0, Ay =0,
y> 0m
Suppose now that the first system has no solution and consider the
non-empty convex subsets S, T of R™ defined by

S={sER™ | s=Ax,x R and T = {t €R™ | t < 0,,).

These sets are disjoint by the previous supposition. Then, there exists

w # 0, such that w'As > w't for s € S and t € K(T). This implies that
w > 0, because otherwise the components of t that correspond to a
negative component of w could be made arbitrarily negative (and large in
absolute value) and this would contradict the above inequality. Thus,
w>0,,

Since 0, € K(T), we also have w/As > 0 for every s € R™. In particular,
for s = —A'w we obtain w/A(—A'w) = — || Aw ||>=0, so A'w =0,
which means that the second system has a solution. 57 /57
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